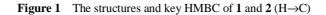
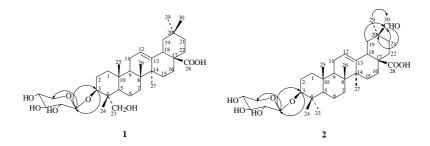
Two New Triterpenoid Glycosides from Elsholtzia bodinieri Van't


Wei Ming ZHU^{1,2}, Hong Ping HE¹, Song WANG¹, Guo Ying ZUO¹, Xiao Jiang HAO¹*


¹Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204 ²Department of Chemistry, Yunnan Normal University, Kunming 650092

Abstract: Two new triterpenoid glycosides, hederagenin-3-O- β -D-xylopyranoside (1), dodecandral 3-O- β -D-xylopyranoside(2), were isolated from *Elsholtzia bodinieri* Van't. The structures of 1 and 2 were established by spectroscopic and chemical methods.

Keywords: Hederagenin xyloside, Elsholtzia bodinieri, Labiatae.

Elsholtzia bodinieri Van't (Labiatae) named Feng-Wei-Cha or Dong-Zi-Su, is a Chinese medicinal plant, which is distributed in Yunnan and Guizhou Province of China. It is used in treatment of cough, headache, pharyngitis, fever and heptatitis¹. In order to seek for the relative bioactive components, we studied the chemical constituents of *E. bodinieri*, which have not been reported in the literature. Two new triterpenoid glycosides, hederagenin-3-O- β -D-xylopyranoside (1), dodecandral-3-O- β -D-xylopyranoside (2), and the aglycone, hederagenin (3)², were obtained from the ethanol extracts of the aerial parts of this plant.

Compound **1** and **2** obtained as crystal solids, $[\alpha]_D^{24}+39.9$ (*c* 0.60, C₅H₅N), mp 264-266°C, and -6.4 (*c* 0.106, C₅H₅N), mp 250-252°C, respectively. Their HRFABMS suggested that the molecular formula was C₃₅H₅₅O₈ [M-H] (calcd. 603.3897, found 603.3953) for **1**, and C₃₅H₅₅O₈ [M-H] (calcd. 601.3791, found 601.3820) for **2**. The ¹³C NMR spectra of **1** was very similar to that of hederagenin², and **2** to that of dodecandral³ except the

^{*} E-mail: xjhao@mail.kib.ac.cn

characteristic signals of D-xylose (Table 1), indicating 1 and 2 to be the glycosides of hederagenin and dodecandral with a pentose, respectively. And the obvious downfield shift for C-3 was observed for aglycone moiety: +8.5 ppm in 1, +10.6 ppm for 2 (Table 1). Besides, the HMBC experiment showed the ${}^{1}H{}^{-13}C$ long-range connectivities for 1 between H-3 (\$\delta 4.25) and C-1' (\$\delta 106.9), C-23 (\$\delta 64.6), C-24 (\$\delta 13.8); H-1' (\$\delta 5.02) and C-3 (δ 82.2), C-5' (δ 67.2); for 2 between H-3 and C-1' (δ 107.6), H-1' and C-3 (δ 88.7), C-5' (δ 67.1) (Figure 1).

Table 1 The NMR data of compound 1, 2, 3 and dodecandral $(4)^a$ in C₅D₅N

	1		2		3	4 ³
positio	¹ H ^b	^{13}C	${}^{1}\mathbf{H}^{b}$	¹³ C	¹³ C	¹³ C
n						
1	1.04, 1.55m	39.0	1.64 (m, 2H)	38.0	38.9	39.0
2	1.98, 2.22m	26.4	2.16 (m, 2H)	26.8	27.6	28.2
3	4.25 (dd, 4.5, 11.2)	82.2	3.34 (dd, 4.0, 11.9)	88.7	73.7	78.1
4	/	43.6	/	39.0	42.9	39.4
5	1.68m	47.7	0.83 (d, 7.5)	56.2	48.8	55.6
6	1.01, 1.06m	18.3	1.62 (m, 2H)	18.5	18.7	18.8
7	1.23 (m, 2H)	33.2	1.46 (m, 2H)	33.2	33.6	33.3
8	/	39.9	/	38.6	39.8	39.8
9	1.78m	48.3	1.66m	48.1	48.2	48.2
10	/	37.1	/	37.1	37.3	37.4
11	1.93, 2.05m	23.8	1.88 (m, 2H)	23.8	23.8	23.7
12	5.46br.s	122.7	5.53 br.s	123.5	122.7	122.4
13	/	145.0	/	144.2	145.0	144.6
14	/	42.3	/	42.1	42.2	42.2
15	1.11, 2.10m	28.5	2.16 (m, 2H)	28.3	28.4	28.4
16	1.16 (m, 2H)	24.1	2.10 (m, 2H)	23.6	23.8	23.8
17	/	46.8	/	46.3	46.7	46.3
18	3.25 (dd, 5.5, 14.2)	42.1	3.18 (dd, 3.6, 11.5)	43.1	42.0	43.2
19	1.30, 1.77m	46.8	2.07 (m, 2H)	40.2	46.5	40.4
20	/	31.1	/	46.9	31.0	46.9
21	1.18 (m, 2H)	34.5	1.98 (m, 2H)	28.1	34.3	28.2
22	1.76 (m, 2H)	33.4	1.87 (m, 2H)	33.8	33.3	33.9
23	3.69 (d, 10.7), 4.31 (d, 10.7)	64.6	1.29 (s, 3H)	28.3	68.2	28.8
24	0.93 (s, 3H)	13.8	0.98 (s, 3H)	17.0	13.1	16.6
25	0.94 (s, 3H)	16.3	0.80 (s, 3H)	16.5	16.0	15.6
26	1.00 (s, 3H)	17.6	0.96 (s, 3H)	17.3	17.5	17.5
27	1.27 (s, 3H)	26.4	1.30 (s, 3H)	26.4	26.2	26.4
28		180.4	/	180.1	180.4	180.3
29	0.92 (s, 3H)	33.5	0.94 (s, 3H)	24.1	33.3	24.2
30	0.99 (s, 3H)	24.0	9.63s	206.2	23.8	206.4
1'	5.02 (d, 7.5)	106.9	4.84 (d, 7.5)	107.6	/	/
2'	3.99 (dd, 7.5, 8.5)	75.7	4.03 (t, 8.3)	76.0	. /	. /
3'	4.06 (dd, 7.5, 8.5)	78.7	4.19 (dd, 8.3)	78.6	/	. /
4'	4.18 (ddd, 4.2, 8.5, 8.5)	71.3	4.24 (ddd, 4.2, 8.0, 8.3)	71.2	. /	. /
5'	3.64 (dd, 4.2, 11.1),	67.2	3.80 (dd, 4.2, 11.0),	67.1	. /	. /
-	4.29 (dd, 8.5, 11.1)		4.00 (dd, 8.0, 11.0)		,	,

^{a 1}H, ¹³C NMR and HMBC spectra were obtained at 500 MHz, 125 MHz and 500 MHz. ^b Coupling constants are presented in Hz.

Unless otherwise indicated, all proton signals integrate to 1 H.

Acidic hydrolysis of **1** with 10% HCl gave hederagenin (**3**) and D-xylose, and **2** gave dodecandral (**4**) and D-xylose, which were identified by TLC comparing with authentic samples and EIMS method. Thus, the structures of **1** and **2** were elucidated as hederagenin-3-O- β -D-xylopyranoside, and dodecandral-3-O- β -D-xylopyranoside, respectively.

References

- 1. Jiangshu New College of Medicine, *The Dictionary of Chinese Medicine (Zhongyao Da Cidian* in Chinese), Shanghai, Shanghai Press of Science and Technology, **1985**, p.489.
- 2. H. Kizu, T. Tomimori, Chem. Pharm. Bull. 1982, 39 (9), 3340.
- 3. S. M. Spengel, *Phytochemistry*, **1996**, *43* (1), 179.

Received 27 June, 2001